## LightCycler 480 I, LightCycler 480 II, and Cobas z 480

Real-Time PCR Detection Systems

(Roche Diagnostics GmbH)

### CONTENTS

| 1.   | Real-time PCR cycler settings                                 | .3         |
|------|---------------------------------------------------------------|------------|
|      | Detection format setup                                        |            |
| 1.2. | Fluorescent channel setup                                     | . 3        |
| 1.3. | Temperature profile setup                                     | . 3        |
| 2.   | Data analysis                                                 | . 5        |
| 2.1. | Ct determination – Quantification methods                     | . 5        |
| 2.2. | Genotype determination – Allelic discrimination method        | , <b>7</b> |
| 2.3. | Melting temperature determination – Dissociation curve method | , <b>9</b> |
| 3.   | Contact1                                                      | 1          |

### 1. Real-time PCR cycler settings

#### **1.1. Detection format setup**

Select the detection format in the run settings according to the manufacturer's instructions for use (IFU). The detection format depends on the number of fluorophores and type of probes. A suitable detection format is recommended in the GENERI BIOTECH's kit manual, typical GENERI BIOTECH formats are listed in the table below:

| Method                                       | Detection Format                        |
|----------------------------------------------|-----------------------------------------|
| Quantification in one channel                | Mono Color Hydrolysis Probe / UPL Probe |
| Quantification in two channels               | Dual Color Hydrolysis Probe / UPL Probe |
| Quantification in four channels              | Define a new det. format according IFU. |
| Allelic discrimination                       | Dual Color Hydrolysis Probe / UPL Probe |
| Melting temperature analysis in one channel  | Mono Color Hydrolysis Probe / UPL Probe |
| Melting temperature analysis in two channels | Dual Color Hydrolysis Probe / UPL Probe |

#### 1.2. Fluorescent channel setup

To set fluorescent filters, follow the manufacturer's IFU. You can choose from default Filter Combination names or create your own combination. Fluorophores mentioned in the GENERI BIOTECH's kit manuals correspond to the excitation/emission wavelengths (nm) listed in the table below:

| Elucrophoro | LC 4       | -80 I    | LC 4       | 80 II    | Cobas z 480 |          |  |
|-------------|------------|----------|------------|----------|-------------|----------|--|
| Fluorophore | Excitation | Emission | Excitation | Emission | Excitation  | Emission |  |
| FAM/SYBR    | 483        | 533      | 465        | 510      | 465         | 510      |  |
| HEX         | 523        | 568      | 533        | 580      | 540         | 580      |  |
| ROX         | 558        | 610      | 533        | 610      | 540         | 610      |  |
| Cy5         | 615        | 670      | 618        | 660      | 610         | 670      |  |

#### **1.3.** Temperature profile setup

Set the basic temperature profile's parameters according to the instrument manufacturer's IFU.

Use the maximum ramp rate for each PCR target, i.e., 4.4 °C/s for denaturation and extension steps (heating up) and 2.2 °C/s for annealing and hybridization steps (cooling down). For a melting target, use a 0.57 °C/s ramp rate with 1 acquisition per °C.

### 2. Data analysis

#### 2.1. Ct determination – Quantification methods

The number references in brackets correspond to Figure A.

Threshold cycle (Ct) determination is used in detection and quantification methods such as:

- gene expression studies
- somatic mutation studies
- pathogen nucleic acid studies

Absolute quantification is suitable for most of GENERI BIOTECH's applications requiring Ct determination.

In the Sample Editor (1), select the Abs Quant workflow. In the Analysis window (2), choose Abs Quant/2nd Derivative Max from the Create New Analysis list.

If you perform a multicolour experiment, use the **Filter Comb** button (**3**) to choose a filter combination for the targets you want to analyse. Make sure to turn the colour compensation off (**4**) and to select the **High Sensitivity** algorithm (**5**). After you have changed analysis settings via any of the multi select buttons, you must always recalculate (**6**) the analysis.

Determine the Ct as Cp values in the **Cp** column (**7**) of the result table.



| 🗇 LightCycler® 480 Software release 1.5.1.62 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                    |                  |                 |                          |                        |           |                      |                     |          |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------|------------------|-----------------|--------------------------|------------------------|-----------|----------------------|---------------------|----------|
| Instrume                                     | nt: No active i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nstrument                               |                    |                  |                 |                          |                        | Database: | My Computer (Resea   | rch)                | Realty   |
| Window:                                      | 190425_ru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n_1                                     |                    |                  |                 |                          | •                      | User:     | System Admin         |                     | Roche    |
| Experi-<br>ment                              | Analyses Ab:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s Quant/2nd                             | d Derivat          | ive Max for:     | All Sample      | 3                        |                        |           |                      | ∃₽⊕⊘⊘               | <b>F</b> |
|                                              | Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Program: c                              | ycling, (          | Color Compens    | sation: Off     |                          |                        |           |                      |                     |          |
| Subset<br>Editor                             | Subset: All 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Samples                                 | 6 7                |                  |                 | ······                   |                        | Ampli     | fication Curves      | Select Zoom         | ୲⋛       |
| Sample                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 |                    | <u>5 0 5 0 5</u> | 5 0 5 4         | 28,263<br>25,763         |                        |           |                      |                     |          |
| Editor                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                    |                  | 5 🛛 5           | 23,263<br>23,263         |                        |           |                      |                     |          |
| Analysis                                     | <b>HE B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B S B B S B B B B B B B B B B</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                    |                  | 5 💽 💆           | لَّ<br>18,263<br>15,763  |                        |           |                      |                     |          |
|                                              | G • 1 • 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                    |                  |                 | ຍິຍິ 13,263<br>ສິ 10,763 |                        |           |                      |                     |          |
| Report                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                    |                  |                 | 8,263<br>5,763           |                        |           |                      |                     |          |
|                                              | Abs Quant :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | results                                 |                    |                  | -               | 3,263                    |                        |           | $\mathbb{N}$         |                     |          |
| Sum.                                         | Positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Negat                                   | tive 📃             | Uncertain 📕      | Standard        | 0,763                    |                        |           |                      |                     | € )      |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Samples                                 | _                  |                  | Results 🔺       | •                        | 5 10                   | ) 15      | 20 25 30 3<br>Cycles | 35 40 45 50         |          |
|                                              | Include Cold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | ame                | <u> </u>         | ntration        | ·····                    |                        |           | • • • • • •          |                     |          |
|                                              | <b>v</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | ample 1<br>ample 2 | 35,36 34,30      |                 |                          |                        | Sta       | andard Curve         |                     | $\odot$  |
|                                              | Image: A state of the state |                                         | ample 3            | 38,62            |                 |                          |                        |           |                      |                     |          |
|                                              | <ul> <li></li> <li></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | ample 4            | 38,54            |                 | oint                     |                        |           |                      |                     |          |
|                                              | <ul><li>✓</li><li>✓</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | ample 5<br>ample 6 | 30,02 23,25      |                 | Crossing Point           |                        |           | Efficiency = 2       |                     |          |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | ample 7            | 35,22            |                 | OSSI                     |                        |           |                      |                     | 19       |
|                                              | Image: A state of the state | A8 Sa                                   | ample 8            | 33,91            |                 | 5                        |                        |           |                      |                     | 6        |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | ample 9            | 38,88            | -               |                          |                        |           | ó                    |                     |          |
|                                              | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A10 Sa                                  | ample 10           | 38.00            |                 |                          |                        | L         | og Concentration     |                     |          |
|                                              | Apply<br>Template                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | lotes              | Calculate        | Color C<br>(Off |                          | Filter Comb<br>465-510 | Use Effic | iency 🗸 Mean         | High<br>Sensitivity |          |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                    | 6                |                 | 4                        | 3                      |           |                      |                     |          |
| $\Lambda$                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                    | Ŭ                |                 |                          | 9                      |           |                      | 2                   |          |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                    |                  |                 |                          |                        |           |                      |                     | $\odot$  |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                    |                  |                 |                          |                        |           |                      |                     | ( - )    |

Figure A. Analysis window: Abs Quant/2nd Derivative Max

#### 2.2. Genotype determination – Allelic discrimination method

The number references in brackets correspond in Figure B.

Allelic discrimination enables assigning the genotype of the DNA samples. In Roche machines, this is referred to as endpoint genotyping.

Each assay (i.e., each particular mutation) should be analysed as an individual subset. Use **Subset Editor (8)** to group samples into subsets. In the **Sample Editor (1)**, select the **Endpt Geno** workflow. In the **Analysis window (2)**, choose **Endpoint Genotyping** from the **Create New Analysis** list.

If necessary, use the **Filter Comb** button (9) to change the filter combination for the targets. Make sure to turn the colour compensation off (10) and to select **Analysis Mode 1** (11). For automated sample grouping, select the **Auto Group** option (12). You can manually change the genotype using the **New Call** drop-down list and **Apply** button (13). After you have changed the analysis settings via any of the multi select buttons, you must always recalculate the analysis (14). Use the **Analysis** tool bar (15) to switch between subsets.

Determine the genotype identity in the **Call** column (**16**) of the results table.



| J LightCycler® 480 Software release 1.5.1.62 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                     |               |  |  |  |  |  |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------|--|--|--|--|--|
| Instrumer                                    | nt: No active instrument                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Database: My Computer (Research)                                                    |               |  |  |  |  |  |
| Window:                                      | 190425_run_2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | User: System Admin                                                                  | Roche         |  |  |  |  |  |
|                                              | Analyses Endpoint Genotyping for C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <br>                                                                                | -             |  |  |  |  |  |
| Experi-<br>ment                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                     | <u>v</u>      |  |  |  |  |  |
|                                              | Information Program: PCR, Color Compensation: Of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                     | 3             |  |  |  |  |  |
| Subset<br>Editor                             | Subset:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P         Fluorescence         Scatter Plot                                         |               |  |  |  |  |  |
|                                              | A 1 2 3 4 5 6 7 8 9 10 11<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12 I Endpoint Fluorescence Scatter Plot Select Zoom                                 |               |  |  |  |  |  |
| Sample<br>Editor                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ■ 11,500; ¥                                                                         | 5             |  |  |  |  |  |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                     | FE            |  |  |  |  |  |
| Analysis                                     | <b>4E O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O S</b> | ■ S 10.000                                                                          | $\mathbf{a}$  |  |  |  |  |  |
|                                              | G G G G G G G G G G G G G G G G G G G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                     | <b>V</b>      |  |  |  |  |  |
| Report                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8,000                                                                               |               |  |  |  |  |  |
| hepon                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =                                                 |               |  |  |  |  |  |
|                                              | Endpoint Genotype results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                     |               |  |  |  |  |  |
| Sum.                                         | 📃 Allele X 📕 Both Alleles 📘 Allele Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                     |               |  |  |  |  |  |
|                                              | Unknown Negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                     |               |  |  |  |  |  |
|                                              | Samples Endpoint Fluore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,5501                                                                              | <u>)</u>      |  |  |  |  |  |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                     | <u>2</u>      |  |  |  |  |  |
|                                              | E2 Sample 50 8,92 0,14 All                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Le X 2,000                                                                          |               |  |  |  |  |  |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Le Y 1,500-<br>Le Y 1,000-                                                          | <u>1</u>      |  |  |  |  |  |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lieles 0,000 o                                                                      | =             |  |  |  |  |  |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lieles 1 7 0,000 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,00011,000 | 14            |  |  |  |  |  |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tive 15 Fluorescence (465-510)                                                      |               |  |  |  |  |  |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | New Call Apply                                                                      |               |  |  |  |  |  |
|                                              | Apply V Notes Calculate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Color Comp Auto Group Filter Comb Analysis (Off) Add Science Analysis Mode 1        |               |  |  |  |  |  |
|                                              | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 12 9 11 _                                                                        |               |  |  |  |  |  |
| $ \Lambda $                                  | ± 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                     | പ             |  |  |  |  |  |
| ك                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                     | $\mathcal{O}$ |  |  |  |  |  |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                     |               |  |  |  |  |  |

Figure B. Analysis window: Endpoint Genotyping

#### 2.3. Melting temperature determination – Dissociation curve method

#### The number references in brackets correspond to Figure C.

For GENERI BIOTECH's genotyping kits, the fluorescence is lowest at the beginning of the dissociation stage of the temperature profile. Fluorescence increases as the temperature rises. The greatest rate of change in fluorescence results in visible negative peaks and represents the Tm of the double-stranded DNA complexes. (Melting temperature analysis results in positive peaks when using non-cleavable hybridization probes or DNA-binding dyes, e.g., SYBR Green I.)

In the Sample Editor (1), select the Melt Geno workflow. In the Analysis window (2), choose Melt Curve Genotyping from the Create New Analysis list.

If necessary, use the **Filter Comb** button (**17**) to change filter combination for the targets. Make sure to turn colour compensation off (**18**) and set all fields in the **Settings** tab (**19**) to the default values. For the automated sample grouping, select the **Auto Group** option (**20**). You can manually change the genotype using the **New Call** drop-down list and **Apply** button (**21**). After you have changed analysis settings via any of the multi select buttons, you must always recalculate the analysis (**22**).

Determine the genotype identity in the **Group** column (23) of the results table.

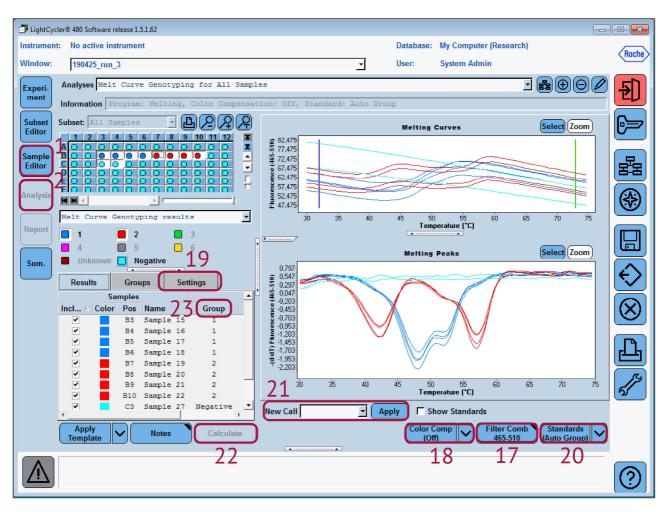



Figure C. Analysis window: Melt Curve Genotyping

### 3. Contact

GENERI BIOTECH s.r.o. Machkova 587/42 CZ-500 11, Hradec Kralove 11 – Trebes CZECH REPUBLIC

#### www.generi-biotech.com

Phone: +420 495 056 314 E-mail: info@generi-biotech.com

Manual version: 2.1 Last revised: 24. 10. 2019

